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Abstract 

The convective-diffusive mass transfer problem with chemical reaction in a Couette planar flow has been analyzed in terms of the integral- 
spectral methods originally introduced by Arce et al. (Comput. Chem. Eng. 2 ( I1 ) ( 1988) 1103). The problem is solved by inverting the 
differential model into an integral equation of a Volterra type, in the axial variable, and of the Fredholm type, in the radial coordinate. The 
kernel of such an integral equation is given by the Green function which does not contain any of the kinetic parameters of the (homogeneous 
and/or heterogeneous) reaction term. This Green function is computed in terms of the eigenfunctions and eigenvalues of the Sttirn-Liouville 
problem associated with the radial variable. The Sttirm--Liouville problem is solved (analytically) by using Airy functions and the final 
integral equation must be solved by an iteration procedure. Several of the mathematical formulation details are discussed and many numerical 
examples are presented to illustrate the technique: for example, concentration profiles for systems with heterogeneous (wall) catalytic 
reactions, homogenous (global) reactions and simultaneous (global and wall catalytic) reactions with kinetics of a general form, i.e. power- 
law and Langmuir-Hinshelwood types of functions are investigated. The solutions to the class of problems considered here are obtained as 
particular cases of the general integral equation solution of the differential model discussed in the article. The effects of relevant parameters 
in the system on the computational algorithm with respect to convergence and (numerical) stability characteristics are discussed. 0 1997 
Elsevier Science S.A. 
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1. Introduction 

Convective-diffusive mass transfer with homogeneous 
and heterogeneous chemical reaction for different reactor 
designs has been analyzed under rather simplified assump- 
tions. Cleland and Wilhelm [ 1 ] investigated first-order 
homogeneous reactions for a laminar tubular reactor by using 
a differential mathematical model which was solved by finite 
difference method. Lawerier [ 21 studied the convective-dif- 
fusive transport in Poiseuille flows coupled with a first-order 
homogeneous reaction. This author presented the solution in 
terms of analytical functions for the tubular reactor geometry. 
Dranoff [ 31 obtained solutions for convective transport and 
diffusion of the reactant with a catalytic wall reaction in a 
tubular or annular reactor by a computational scheme. In his 
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solution approach, eigenfunctions and eigenvalues of the 
Stiirm-Liouville problem associated with the diffusion oper- 
ator were used. The eigenfunctions and eigenvalues, 
however, were calculated numerically. Poirier and Carr [ 41 
extended the solution of Cleland and Wilhelm to include 
second-order reactions. Ogren [5] proposed a solution for 
the laminar tubular reactor with a first-order homogeneous 
and wall reactions. Solbrig and Gidaspow [ 6 ] considered a 
first order heterogenous reaction for a reactor with planar 
geometry and obtained the concentration profile as well as 
asymptotic expressions for large eigenvalues. Also, these 
authors used a finite difference scheme to study the case of 
an arbitrary wall reaction rate for a rectangular reactor [ 291. 

Mass transfer processes containing a fluid that flows under 
laminar regime in a Couette fashion has a variety of appli- 
cations in processes related to chemical engineering. Some 
of these applications include, for example. liquid-liquid 
extraction [ 71, the treatment of continuously moving solids 
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in the form of wires and sheets which involves moving inter- 
faces and complex diffusion and convection mass transfer 
[ 81, coating processes [ 91, and some important biochemical 
system such as mass transfer processes in dializers, oxygen- 
ators, and other membrane processes [ IO]. 

The present paper focus on a problem related to the family 
mentioned above where the convective-diffusive mass trans- 
port problem is coupled with chemical reactions either at the 
wall or in the bulk solution. The fluid moves under a Couette 
type of flow in a rectangular geometry. The solution meth- 
odology adopted for the analysis of such a problem follows 
the general computational approach introduced by Arce et al. 
[ 1 I] and that more recently was extended to a variety of 
transport and reaction processes [ 12,131. Such scheme uses 
integral equations whose kernel is given by the Green func- 
tion of the differential problem. This Green function is 
obtained by a spectral expansion using the eigenvalues and 
eigenvectors of the linear transport problem. Within the gen- 
eral framework, this methodology can be viewed as an inte- 
gral-spectral approach [ 14,131. The methodology decouples 
the linear aspects of the problems from the non-linear contri- 
bution (i.e. the transport is considered separately from the 
reaction). As it will be shown in the analysis. a family of 
problems can be efficiently solved with such a type of 
approach with a minimum of changes in the computational 
aspects. The approach converts a differential model into a 
non-linear integral equation that is then solved on the com- 
puter by an iterative procedure. 

This paper will introduce the differential model in the next 
section with the physical assumptions related to it. The inte- 
gral formulation, with the identification of the eigenvalue and 
Green function, will be presented next. The following section 
will address the solution of the eigenvalue problem in terms 
of the Green function in terms of eigenvalues and eigenfunc- 
tions. Illustrations covering a variety of cases will be dis- 
cussed at the end of this contribution. 

2. General model formulation 

A sketch of the geometry of the device used in this paper 
is shown in Fig. 1. Such a system displays a geometry with 

two parallel plates where the lower plate is assumed fixed and 
impermeable to mass transfer of chemical species, while the 
upper plate moves at a constant speed, V. The upper plate 
may undergo a heterogeneous catalytic reaction simultane- 
ously with a homogeneous reaction in the bulk. The chemical 
reaction rate functions of both types of reactions are assumed 
of a general form and they are only restricted by the usual 
smoothness constraints necessary in kinetics. In this sense, 
the reaction rate could be modelled by a power-law kinetics, 
a Langmuir-Hinshelwood kinetics or a zero order type of 
reaction rate. It is also assumed that: ( 1) the hydrodynamic 
velocity field does not feature a component of the velocity 
field in the z-direction since there is no flow in z-direction 
(i.e. the flow field is one dimensional and fully developed) ; 
(2) the system is isothermal, hence the physical properties 
of the system remain constant; (3) the fluid is assumed to be 
incompressible and Newtonian; and (4) the steady state is 
reached. Under these assumptions, the hydrodynamic veloc- 
ity profile is given by [ 1.5 ] 

where it also is assumed that there is no pressure gradient in 
the system. This assumption does not represent a serious 
limitation of the problem and extensions to relax these 
assumption are not tedious. The molar species continuity 
equation with the bulk reaction term and under the assump- 
tions discussed above is given by 

(2) 

with inlet and boundary conditions specified as: 

C’(x=O) =c, (3) 

=R’[C’(x.W)] 

I I 
Fig. 1. Geometrical sketch of the planar Couette device. 
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In Eq. (2)) it has been assumed that the convective trans- 
port in the axial direction is dominant with respect to diffusion 
in the axial direction. The function, Q’ [C’(x,y) ] is a 
source( or sink) term of the species originating from the 
homogeneous reaction term occurring in the bulk system, and 
R' [ C’ (x, W) ] is another source term used to describe the 
heterogeneous reaction at the moving surface. 

By introducing Eq. ( 1) in Eq. (2) and by defining the 
following set of non-dimensional parameters 

$ &!$ & 
CO 

(6) 

pe=F GeEW 
L (7) 

Eqs. (2)-( 5) can be transformed into 

(8) 

Cl,=,= 1 (9) 

K 
ap &= 

0 

ac 
ap p=, = -n,[C(&l)l 

where the parameter (Y= PeGe and the non-dimensional 
reaction terms have been identified as a[ C(&p)] and 
fi,[ C( .$I)] for the bulk and wall reaction, respectively. 
These non-dimensional rates of reaction are given by 

fXC(&;p)l =-~QWX.PN (12) 

and 

QvtC(t>l)l +C(5,1)1 (13) 

Eqs. ( 12) and ( 13) will feature the Damkholer number 
for the case of homogeneous and heterogeneous reactions, 
respectively when a particular reaction rate is selected. There 
is no special restriction for this selection and kinetics of the 
power-law and Langmuir-Hinshelwood family will be used 
in this investigation. In the section below the differential 
model derived above will be inverted into the integral form 
and the Green function of the problem as well as the associ- 
ated eigenvalue problem will be identified. 

3. Solution methodology 

The solution of the differential model represented by Eqs. The operation fi is the adjoint operation of H [ 161 which has 
(8)-( 11) is based on the use of an integral-spectral approach been defined by Eq. ( 14). Eq. ( 17) is a general expression 
that uses the Green function of the convective-diffusive that holds for any boundary conditions. Mathematically, it is 
transport problem of the model (see Refs. [ 11,13,12] ) as the convenient to identify the following conditions for the test 
kernel of the integral equation for the concentration field. The function G(x]x’) [ 171 

reaction terms of both the catalytic reaction and the homo- 
geneous reaction in the bulk appear in the integrals as non- 
linear source terms. 

In this section, the analysis is focused on inverting the 
differential problem into an integral problem. The approach 
begins with (8) which can be written in a compact form by 
defining the following parabolic differential operation 

(14) 

By using the operation defined in Eq. ( 14) in Eq. (8) we 
obtain 

Ix= -WC(S,p)l (15) 

Now, an integration by using a test function G(x lx’) is pro- 
posed to obtain 

.$+r I 

I I 
d[’ dp’ G(xlx’)HC(x’) 

0 0 

c+t- I 
=- 

I ! 
dt’ dp’ G(x lx’) n[C(x’) ] (16) 

0 0 

where x = (6,~). Working on the left hand side of Eq. ( 16) 
and successively using integration by parts, yields an equation 
that can be written as follows 

Ci-E 

I 
d.!J’]G(xlxi’, l)%]C(5’, 111 +Gp’(xIS’, 1) 

0 

XCCt’, l)-G,‘(xl5’,O)C(5’.0)1 
C-eel 

+ 
II 

dp%G(xlx’)C(x’)d<’ 
0 0 

2 

(Y~‘[G(xI~+~,P’)C(~+~.P’) 
0 

-G(xlO,p’)C(0,~‘)1 
t+r I 

=- dp’ G(xlx’)i-3C(x’) 1 
0 I 

(17) 

where the operation fi was identified as 

,. a2 a 
H=-ap~-cyq~ 
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fiG(xlx') =c&p-p')S(&-6') (19) 

G’(xll$‘,l>=O (20) 

G'(xlc$',O) =0 (211 

G(x Ip’,t+ E) = 0 (causality) (22) 

in which S( p - p’ ) and 6( t- 5’ ) are the generalized Dirac 
delta functions. The formal integral representation results 
from substituting Eqs. ( 18)-( 21) into Eq. ( 17) and then 
performing the limits operation ~‘0, which produces the 
following result 

C( &p) = --!.jd$i$ G(xIx’)a[ C(x’) ] 
0 0 

E I 

-$ 
I 

de’ G(xl5'J)~,.,[C(5',1)1+ 
I 

P’ 
0 0 

xG(xlO,p’)C(O,p’) dp’ (23) 

In Eq. (23)) the first term on the right hand side is the term 
that comes from the bulk reaction, the second one is due to 
the catalytic reaction on the wall, and the third term is the 
contribution from the inlet concentration distribution. Eq. 
(23) is a formal solution to the differential problem since the 
unknown, C( &I), is under the integral symbol as well as on 
the left hand side. Therefore, Eq. (23) requires further effort 
to obtain the concentration field. Also, the test function 
G(x Ix’) is the Green function associated with the parabolic 
transport operator, A, and it will be identified in terms of the 
eigenvalues and eigenfunctions of the problem. This analysis 
is presented in the sections below. 

3.1. IdentiJication of the associated eigenvalue problem 

The integral representation of the differential problem 
given by Eq. (23) requires the function G(x Ix’ ) to be iden- 
tified and computed in terms of known quantities. An impor- 
tant step to achieve this purpose is the identification of the 
eigenvalue problem associated with the “lateral” diffusion 
processes of the physical problem. 

In order to identify the proper Sttirn-Liouville problem, 
i.e. the set of equations that leads to the eigenvalue problem, 
another test function &(p) and a solution V( 5) will be used. 
The set of function 4,,,(p) satisfies only the homogeneous 
boundary conditions of the problem given in Eqs. (8)-( 11). 

By using the operator H with the homogeneous boundary 
conditions by successive integrations by parts of Eq. ( 15), 
the following Stiirm-Liouville problem can be obtained 

* 
dp2 (PI = - ~hh(P) 

h?‘(l)=0 (25) 

A’CO, =o (26) 

Eqs. (24) and (25) are the homogeneous boundary condi- 
tions for the problem in terms of function { r#~,,,( p) ) and have 
been derived from the non-homogeneous boundary condi- 
tions of the original problem. The problem given by Eqs. 
(24)-( 26) defines the Sttirm-Liouville problem associated 
with the diffusion process in the transverse direction, p, of 
the channel. 

Now, with the definition of the set of function U,( 5) given 
by 

u,,<B = dp’ p’4,b’>C(x’) (27) 
0 

and the set functions i,( 5) given by 

L(5) = - I dp’ hz(~‘)fl[C<x’)l (28) 
0 

the following ordinary differential equation can be written 

This equation is subject to an initial condition, U,( 0) that 
is constructed by using the original initial condition given by 
Eq. (27) to obtain 

u,(O) = dp’ ~‘dO’)C(o,p’) I 
0 

(30) 

The solution to Eq. (29) is given by 

Urn(c) = U,(O) exp )I 
+ j%exp[$(d’ - [)I d,$’ 

0. 
(31) 

in which the set of eigenfunctions 4n( p) with eigenvalues h, 
is the solution to the eigenvalue problem defined by Eqs. 
(24)-( 26). This set of functions is a basis where theelements 
that belong to two different eigenvalues are orthogonal to 
each other with a weighting function p on the interval (0, 1). 
Therefore, 

I dp’ P’A(P’)~~(P’) =A%L,, 
0 

where 

(32) 

(33) 

is the normalization factor of the set of eigenfunctions 
(4,(p) ). The set of functions ( &(p) ) and A, are the eigen- 
functions and eigenvalues respectively of the characteristic 
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equation. This characteristic equation may be derived by pro- 
posing a general solution to Eq. (24) in terms of the Airy 
functions A,(z) and B,(z) of first and second kind, respec- 
tively. In order to achieve this solution, the following trans- 

formation of variables is proposed [ 181 

7= hi’3p and U,(z) = +n( hi’“z) & 

which can be used in Eq. (24) to yield 

(34) 

U,“(z) - zU,(z) = 0 (35) 

Eq. (35) is a standard Airy differential equation (see, for 
example, Ref. [ 191. The general solution to eq. (35) can be 
written as 

u,(z) =C,A,(z) + W,(z) (36) 

where C, and C, are integration constants. The values of C, 
and C2 must be determined from the boundary conditions of 
the eigenvalue problem. Invoking Eqs. (25) and (26)) the 
following characteristic equation may be obtained 

fiA,‘( -h;‘3) +B,‘( -A;“) =0 (37) 

where the prime is used to denote differentiation with respect 
to Z. The eigenfunctions for the eigenvalue problem associ- 
ated with diffusive transport problem in the transverse direc- 
tion of the channel are 

{4%,(z) I = 
CL 

A,(z) +L”i(z) z= -h2,3 
JI 1 ,s 

(38) 

By using the integral representation of the derivatives of 
the Airy functions A;’ (z) , Bj’( z) [ 301 and the computational 
approach introduced by Chen et al. [ 181 numerical values 
for the eigenvalues and eigenfunctions have been obtained 
from Eqs. (37) and (38) respectively. Table 1 gives the first 
fifty eigenvalues. The eigenvalues increase monotonically 

with a slow rate of increase for the small values of n but this 
rate increases for larger values of n. For example, the differ- 
ence between AZ and A, is 70.3 114, but between A,, and Ad2, 
the difference is 1805.1. Hence, the larger A,,, the more rapidly 
the series expansion for concentration profiles will converge 
with a small number of terms. 

Figs. 2 and 3 show the graphical presentation of the first 
ten eigenfunctions. Generally, oscillations of the eigenfunc- 
tion about zero increase as the order of the eigenfunction 
increases. The homogeneous boundary conditions of zero 
flux are satisfied at both ends of the domain by the variable 
p( 0 < p < 1) . The increase in frequency of the eigenfunctions 
suggests an interesting criteria for the number of points 
required in the variable p to capture (numerically) the behav- 
iour of the eigenfunctions. The eigenfunctions &n(p) are all 
analytical and they are based on the Airy functions as dis- 
cussed previously. The fact that the eigenfunctions of the 
associated St&n-Liouville problem are given in terms of 
analytical functions is very useful from the computational 
point of view. Also, the eigenvalues are independent of the 
main physical parameters of the system (i.e. D,,, U, and a). 

Table 1 

First fifth eigenvalues of the operator L 

N A N h 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

O.OOOOOOE + 00 26 O.l39714E+05 
0.256381E+02 27 0.15 1076E + 05 

0.9594958 + 02 28 0.362882E + 05 
0.21068lE+03 29 0.175132E+05 
0.369821E + 03 30 0.187828E+05 
0.573388E + 03 31 0.200967E + 05 
0.821352E+03 32 0.214550E+05 

0.111375E+04 33 0.228577E + 05 
0.111375E304 34 0.243048E + 05 
O.l83176E+O4 35 0.257964E + 05 
0.225736E + 04 36 0.273322E + 05 
0.225739E + 04 37 0.289128E+05 
0.324188E+O4 38 0.305375E + 05 

0.380075E + 04 39 0.322068E + 05 
0.380075E + 04 40 0.33920 I E + 05 
0.505 172E + 04 41 0.356757E + 05 

0.574359E + 04 42 0.374808E + 05 

0.648035E + 04 43 0.393276E + 05 

0.726 l28E + 04 44 0.412189E+05 
0.808662E + 04 45 0.43 1547E + 05 
0.895638E + 04 46 0.45 1346E + 05 

0.9870518+04 47 0.4715928+05 

O.l08291E+O5 48 0.49558lE+O5 

0.1183228+05 49 0.513414E+05 
0.128797E + 05 50 0,534991E+05 

O.8 

0.4 

g 

3 

on 

0.4 

0.8 
on 0.2 0.4 0.6 08 IO 

P 

Fig. 2. First five eigenfunctions of the St&m-Liouville problem. 

-- 

P 

Fig. 3. Next (n = 5-10) eigenfunctions of the Stiirm-Liouville problem. 
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This aspect is useful in the parametric analysis of the original 
system as it eliminates the need to recompute the eigenvalues 
and eigenfunctions every time that the kinetic parameters are 
changed as it will be presented in the applications of this 
contribution. 

3.2. Expansion of the Green function in the set of 
eigenjimctions 

The Green function G(x IX’) is formally identified in this 
section. In the section below, the analysis will be focused on 
producing a computational formula for the Green function. 
The basis for such an expansion is given by the Mercier 
theorem (see, for example, [ 201) which allows us to com- 
pute the function G(xlx’) in terms of the eigenvalues and 
eigenfunctions of the St&n-Liouville problem solved in 
Section 3.1. 

By using the linear superposition method [ 171, an expan- 
sion of C(x) in a series of the eigenfunctions &(p) is given 

by 

and by substituting the expression of U,( 5) into Eq. (39), 
the following result is obtained 

This equation can also be written as 

(40) 

E 1 

-‘j-dt’(dp’R[C(x’)] 
ff 

0 0 

x 4JAP’)4ln(P’> 1 (41) 

By comparing term by term between Eqs. (41) and (23) 
the following expression for G(x Ix’) can be derived 

xdJn(P>hz(P’)N5-5’) 1 (42) 

where 0( f- 5’ ) is a step function and Ai is the normalization 
factor defined by Eq. (42). 

The function G(xlx’) given by Eq. (32) satisfies all the 
properties required by Eqs. ( 19)-( 22). Therefore, by defi- 

nition [ 161, the function G(x Ix’) is the Green function of 
the differential problem of diffusive-convective transport and 
reaction formulated in Section 2. With the identification of 
the Greens’s function the integral formulation of the problem 
is now complete. 

4. Computational approaches to solve the integral 
equation of the concentration field 

The concentration field equation given by Eq. (41) is a 
formal nonlinear equation that requires a computational solu- 
tion to obtain the values of C( p, 5). The general form of this 
integral equation is given by 

W(x) = W(x”> + 
I 

dx’ K(xlx’)F[ W(x) 1 (43) 

where K(xlx’) is the kernel of the integral transformation 
which is given by the Green function identified in Section 3. 
The notation W(x) has been used to indicate a generic con- 
centration profile for the various cases (i.e. wall reaction, 
bulk reaction, etc.) involved in the physical system. The 
function F[ W(x)] represents a generic kinetic law. In the 
most general case, Eq. (43) is a Hammerstein-Voltema non- 
linear integral equation [ 2 1 ] of the second kind. The nonlin- 
ear aspects featured by Eq. (43) are introduced by the 
potential nonlinear kinetics such as power law (with n 2 2)) 
Langmuir-Hinshelwood, or others. The sollution to Eq. (43) 
can be obtained by a variety of methods including a modified 
block by block method [ 221, spline approximations [ 231 
and others (see for example, Golberg [ 211 for a recent 
review). The equation can also be solved by an iterative 
procedure of the form 

w’k+‘)(x) = W(x”) + 
I 

dx’ K(xlx’)F[ Wk(X’)] (44) 

One successful technique is the Piccard iteration procedure 
that has been used in convective-diffusive transportproblems 
[ 13,121. For cases where the kinetics is not a function of the 
concentration field, i.e. zero order kinetics, the solution to the 
integral equation can be accomplished without an iteration 
procedure of any kind. For the cases with reactions at the 
wall, the computational solution must be ‘carefully handled 
to eliminate the so-called Gibbs phenomena. This produces 
spatial oscillations in the concentration field because of the 
need for a large number of eigenvalues required to reproduce 
the profile near the wall [ 121. The procedure used in this 
contribution is based on the replacement of Fourier expan- 
sions by closed sums identified by solving an asymptotic 
convective+diffusive problem with zero order reaction at the 
wall [24]. The approach follows the general guidelines 
explained in Ref. [ 121 and successfully applied to the 
Poiseuille flow case [ 131. 

Several details about the illustration, of the various cases 
are included in the sections below. Some mathematical 
aspects that are not essential to the discussion in the text are 
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included in Appendix A. These aspects, however, are useful 
for the implementation of the solution from the numerical 
point of view. 

As discussed above, the concentration profile may be 
obtained by solving the (formal) integral representation of 
the differential problem. In general, such a solution will 
require the use of a 2-D grid in the axial and transversal 
directions in the channel. However, the solution for the case 
of the wall reactions can be obtained by a computational 
approach that involves the calculation of the concentration at 
the wall only, i.e. C( 1 ,t). This characteristic is based on the 
fact that catalytic wall reactions produce integrals with the 
unknown only at the surface of the channel. This is very useful 
as it reduces the iterative procedure to only one dimension, 
i.e. the axial variable, rather than the two dimensions origi- 
nally featured by the problem. Several iterative procedures 
can be used to obtain the solution of integral equations of the 
type of Eq. (43). In this paper, a procedure based on the 
following equation 

c”( &P) 
c+'(63p)=cy&p)+ Id[P(&p)] I 

(45) 

was adopted. The function a( . ) in Eq. ( 1) is given by 

+~IIG(&PI~~,P~)~(~~,P, &? dp’ 
00 

(46) 

and C’“‘, Ccn+ ‘) are respectively the concentration profiles 
calculated in the nth and (n + 1 )th iterations. Eq. ( 45) was 
solved numerically for the various cases in terms of above 
iterative scheme. A mesh with at size of 5 1 X 5 1 in 2D 5, p 
plane was chosen to perform the computations when neces- 
sary. This mesh size was shown to be small enough to reach 
solutions within a prescribed error. Convergent solutions 
were taken if the following condition was satisfied 

“+“(&3Pj) -c”(Si*Pj)12 
(NM- 1) (47) 

where, N = 5 1, M = 5 1 and E is the permitted convergent error 
(E= 10-5). 

The Green function G( &pl [',p') in Eq. (46) contains an 
infinite number of terms which is not possible to be included 
in the computations. However, since each term of the function 
is expanded in terms of an infinite series of eigenfunctions 
and since each term is associated with exponential function 
of 5 that decays with 5 and the eigenvalue A,, an adequate cut 
can be obtained for taking into account only a finite number 
of the terms. Therefore, the Green function G(x lx’), tends 
rapidly to zero with increasing corresponding eigenvalues 
when e> 0 within the domain of calculation and for a given 
value of 5. For the conditions involved in this study, anumber 
of twenty terms were found to give results within the required 

accuracy. All numerical integrals involved were evaluated by 
the Simpson’s method of integration except for the first two 
steps where a trapezoidal method was found to give a better 
result. 

There are three types of errors involved in the complete 
solution of the integral of Eq. (45). The first error is associ- 
ated with the implementation of the Green function in the 
computer calculations. We will denote this error by E,. As 
pointed out previously a value of N= 20 in terms of the series 
expansion for the Green functions indicates that the series 
captures the behaviour of the function. Another error is the 
one involved in the numerical calculations of the integrals of 
the equation. This error is related to the particular method 
used in the numerical calculation of such integrals. We denote 
this error with l 2 is a function of the size of the integration 
mesh. For most of the calculations ( after some trial and error) 
a number of 50 points were enough for both the radial and 
axial variables. However, for the case of wall reactions of the 
axial variable is the only one to be considered with as pointed 
out earlier in this section. The final error that needs attention 
is the error associated with the iterative procedure described 
above in this section. If we denote this error by 3, we have 
a error relationship such that the total error is given by 

E,=E,+E2+E3 (48) 

A good criteria for achieving meaningful calculations is that 
E,<E2<E3. 

Based on the successive iteration approach mentioned 
above, the proposed method is absolutely convergent for any 
initial concentration profile. In most of the cases, an error E3 
of low5 could be reached after 10-20 iterations. The com- 
putations were improved by recognizing that the Green func- 
tion G( tJ,pl&',p') is independent of the parameters of the 
model (Pe, Da and Ge) hence the value of G( (,pl t',p') can 
be retained in computations for different values of the para- 
meters. Substituting the expression for the Green function 
into Eq. (23) and rearranging the equation, we have 

x 
D 

dp’ &~,(P’)JXC(S’,P’) 1 
0 

+4%,(lmv[c(5’,1)1 (49) 

The values the function G(xlr’) for each point in the 
constituted mesh where calculated once, and then stored as a 
data file, which could be retrieved in the later computation 
for other sets of the parameters. By using this strategy, com- 
putations for heterogeneous and homogeneous problems with 
an error of lop5 could be performed in a relatively short time 
for a wide range of values of the parameters involved in the 
model. 

In the previous paragraphs, the general iterative scheme to 
obtain the convergent solution of the integral Eq. (49) was 
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described. Such a procedure, however, shows fluctuations in 
the concentration profile near the vicinity of the catalytic 
surface of the moving plate when a heterogeneous reaction 
takes place. This is known as the Gibbs phenomenon [ 161, 
is caused by the discontinuity of the function of C( &p) at the 
position of p= 1, where the eigenfunction series expansion 
requires a great number of terms because of its very slow 
convergence. Several methods have been proposed to over- 
come the effect, among those, a close form expression of the 
series expansion [ 121 has been used to correct the behaviour 
of the series near the reactor wall. In this approach, an asymp- 
totic result for the sum of the remainder of the series is derived 
so that the calculation can be conducted by taking the 
summation of a limited number of terms of the “closed” 
form. In Appendix A, the derivation of the “closed” form 
expression for the case of the heterogeneous reaction term is 
presented. 

The forma1 solution of the genera1 convective-diffusive 
transport problem is given by 

I c 1 

Cc&p) = 
I 

P’WIO,P’)C(O>P’) dp’-$ 
i ! 

G dp’ 
0 0 0 

5 

XG(xlx’)i2[C(x’)] -t 
I 

dt’G(xl[‘,l) 
0 

However, since there is no homogeneous reaction in the 
bulk fluid Eq. (50) can be rewritten as 

I 

q&p) = 
I 

p’G(xlO,p’)C(0>~‘) dp’ 
0 

5 

-ijdtf G(xl5’,1)f4v~~~5’>~)1 
0 

(51) 

G(x Ix’) is the Green function associated with the transport 
problem and it is given by 

x4n,(P)4+z(1) NE--5’) 1 (52) 

Eq. (51) is the solution for the heterogeneous catalytic 
reaction case described above. The integral equation contains 
two terms. The first one is the contribution from the inlet 
concentration distribution and the second one is the term 
related to the contribution of the reaction at the wall. If a 
reactant is fed to the system with a uniform concentration 
(i.e. Co = 1 at c=O), then substituting the expression for 
G(xlO,p’) into the first term of Eq. (51) leads to 

I 
z 

p’G(xlO,p’) dp’= CA;‘&p)exp 
0 fl=O 

where 

(53) 

3/n = dp’ P’~,(P’> (54) 
0 

3/n can be related to the boundary condition at the wall, p = 1, 
by using the eigenvalue problem identified in Section 3.2 by 
following the methodology described in Ref. [ 131. 

yn=O for all iz#O (55) 

6 
yn=~ for n=O (56) 

Eqs. (55) and (56) can be proved by using &‘( 1) =O, 
n 2 1. For the case of n = 0, A, = 42 for the normalized zero 
eigenfunction. The result of this analysis is that 

p’G(xlO,p’) dp’= 1 (57) 
0 

For the case of uniform concentration distribution at the 
inlet. Therefore, the general solution for heterogeneous cat- 
alytic reaction with an uniform inlet distribution is a non- 
linear equation with the wall concentration as the unknown. 
This leads to the solution of a boundary-integral equation 
which reduces by one the spatial dimension of the original 
differential problem. This equation is given by 

5 

C(x) = 1 -k/de’ G(xlE’,l)fJw[C(5’,1) 1 
0 

(58) 

Although the method is by no means restricted to irrevers- 
ible chemical reactions, in this paper the computational 
approach will focus on irreversible reactions of power-law 
and Langmuir-Hinshelwood kinetics. 

For the case of power-law reaction kinetics with an arbi- 
trary choice of order, n, the reaction rate is given by 

WC’(5,1)1 =ks’“(5,1) (59) 

where k,. is the reaction constant of the heterogeneous cata- 
lytic reaction. The non-dimensional form to the reaction rate 
kinetics is 

Qv[c(~~l)l =~awC(&1) (60) 

where D,, = k,W/D is the Dan&holes number, which 
describes the relative importance of the chemical reaction to 
diffusion. 

Hence, for the case of the chemical reaction mentioned in 
Eq. (60), Eq. (58) becomes 

5 

C(x) = 1 +(dt’ G(xI~‘,l)C”(~‘,l) 
0 

(61) 
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Another example of heterogeneous catalytic reactors con- 
sidered here is the Langmuir-Hinshelwood form. The expres- 
sion corresponding to this kinetics is given by 

kvCw’(x) R[C’(x,l)] = ,. 
K+ Cw’(x) (62) 

where k, is the kinetic constant, &is the equilibrium (absorp- 
tion-desorption) constant, and C,‘(X) is the concentration 
of the reactant at the moving wall of the system. The non- 
dimensional version of this equation is 

f2w[c(&1), = Dawc(5T1) 
K+c(5,1) (63) 

Similarly as in Eq. (60)) D,, is the Damkholer number and 
K is a non-dimensional constant. 

Substituting Eq. (63) into Eq. (58) yields 

5 

c(x) = l+ 
I 

d[’ G(xlt’,l) 
C(S’,l) 

[K+c(t’J)l 
(64) 

0 

Eq. (64) has two important limiting forms. The case of 
zero order reaction limit is achieved when C( c,l ) B K and 
then Eq. (64) reduces to 

Xexp[ -PA5-(‘)I (65) 

where p,, = Ai/ (Y. Eq. (65) has the same form as the zero 
order reaction with the power law kinetics (i.e. Eq. (60) with 
n=O). 

After integration, and use of the zero eigenvalues (i.e. 
ho = 0) and corresponding eigenfunctions (i.e. &o(p) = 42)) 
Eq. (65) produces the following explicit solution for the 
concentration profile system for the zero order reaction case. 

qx) = 1 -(+)$$)‘,y+&)) 

X [ 1 - W - &> 1 (66) 

Another limiting case is the first order reaction limit (when 
C( f, 1) x K) . This implies that the solution to the system is 
given by 

5 

C(x)=l-2 
I 

dG(xle’,l) C(s’,l) 
0 

(67) 

which has the same form as Eq. (61) when take n q = 1. 
Eqs. (61) and (64) are integral representations of the 

problem for the convective+%ffusive transport and power- 
law or Langmuir-Hinshewood kinetics for the surface reac- 
tion, respectively. Eqs. (66) and (67) are the solution of two 
interesting limiting cases of the physical problem. 

In order to obtain the concentration profile, the integral 
equation written above will be solved by a computational 

scheme explained above. The Gibbs phenomena at the wall 
of the reactor will be properly handled to produce the correct 
numerical results by using the approach outlined earlier in 
this Section 2 and in Appendix A. 

Numerical solutions of Eqs. (61) and (64) have been 
obtained and concentration profiles obtained, for different 
values of the parameters (i.e. D,,, n, K) and for different 
reaction kinetics (i.e. power-law and Langmuir-Hinshel- 
wood types). 

The relative effect of the convective transport with respect 
to the diffusive transport in the system is characterized by the 
parameter Pe, which is defined in Eq. (7) of this article. It 
has been shown that [ 25,261, axial diffusion becomes insig- 
nificant when Pe > 100. For Pe < 100, a decrease in the value 
of the Peclet number will increase the effect of axial diffusion. 
There is however. a wide class of practical problems where 
the axial dispersion play a negligible role. Hence, in this work, 
we keep the Pe 2 100, and neglect the axial diffusion com- 
pared with the convective transport in the axial direction. The 
other parameters investigated in this work are (Y in the range 
l-100 D,,, and the reaction order N= 1,2,3. 

Fig. 4(a) and (b) shows the effect of the order of the wall 
reaction, n, on the concentration profiles when a kinetics of 
the power-law type is used in the reaction rate and the values 
of the parameters are given by (Y = 10 and D, = 1. As the 
value of n decreases from 3 to 0, the concentration of reactant 
decreases indicating an increase in the effect of the wall 
reaction. For decreasing value of n, the reaction rate increases. 
Fig. 4(a) shows that the concentration profiles at the exit 
position of the reactor ( &= 1) along the lateral direction are 
very close to each other. The major difference occurs just 
near the catalytic surface i.e. p>O.8, since the catalytic 
(wall) reaction acts as a sink on the surface. The analysis 
shows that the effect of the reaction order on the concentration 
field is not important for the values of the parameters used. 

Fig. 4(b) shows the concentration profiles for the case 
where there is a first order reaction on the catalytic surface 
and for different values of the D,, number with (Y = 100. This 
figure shows the effect of a variation in the Damkholer num- 
ber, D,, on the lateral concentration profiles at outlet of the 
reactor. It is observed that very little conversion occurs for 
the case of D,, = 0.1 since the profiles for such a value of 
D,, is almost the same as that for D,, = 0. Also, as expected, 
the concentration of reactant decreases when increasing the 
value of D,, number (see Eq. (6 1) ) A value of D,, = 1 
yields a wall concentration of reactant at the outlet of the 
system of C,( 1) =0.88 while when the D,, is increase a 
hundred times, the concentration of reactant goes to a value 
of C,( 1) = 0.06. The effect of the increase of the conversion 
may be explained due to the effects of the reaction constant, 
k,WID. If one keeps W, D as constants, then an increase in 
the reaction constant, k, implies that the power of the wall 
reaction increases. Hence, the concentration of reactant 
decreases in the system, or alternatively, the conversion in 
the reactor increases. 
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Fig. 4. Output radial concentration profiles for power-law kinetics for dif- 
ferent values of the order (a), Da(b) and a(c). 

Also, examination of Fig. 4(b) shows that the variation of 
concentration take place in the region near the catalytic sur- 
face of the system ( p > 0.55), it implies that only a region of 
the system (close to the catalytic surface) is under the influ- 
ence of the surface reaction for a given condition ( LY = 100). 
As we increase the D,,,, number, the effect of the reaction 
becomes larger. 

Fig. 4(c) shows the effect of the residence time of the 
system on the concentration profiles through the parameter 
cu( (YE PeGe) for a given D,,. This parameter is varied 
between CN = 1 .O and (Y = 100. The effect of the parameter can 
be interpreted in two different ways. For a given geometry 
and a value of the diffusion coefficient, when convection is 
stronger, the residence time is smaller and concentration of 
reactant in the system goes up. On the other hand, if the 

velocity of the fluid is constant, then a species with a small 
diffusion coefficients has less mass transported towards the 
catalytic wall, and the concentration of reactant increases. 
From Fig. 4(c) it can be seen that for the values of (Y < 50 
there are significant effects on the concentration profiles. 
Most of the profiles, for a given value of Q’, remains unchan- 
ged throughout the domain of the variable p and the most 
appreciable change occurs near the wall of the reactor, p= 1. 

Fig. 5 shows the computational results for the case of a 
Langmuir-Hinshelwood reaction given by Da,&,/ (K+ C,) 
that occurs at the moving wall of the system. The calculations 
were performed using LY = 100 and D,, = I, and the value of 
K is varied within the range between K=O.Ol and K= 100. 
From Fig. 5 (a), it can be seen that concentration profiles have 
the same qualitative shape as those computed using power- 
law kinetics. The lateral (Fig. 5 ( b) ) concentration profiles 
show the most significant depletion in the reactant concentra- 
tion near the wall ( p = 1) in a region located in the range 
0.7 < p < 1. Fig. 2(b) shows the variation of lateral concen- 
tration with different values of K in the system ( &= 0.6). 

Presented in Fig. 5 (a) are the axial concentration profiles 
at the wall positions ( p = 1) . As the value of K increases, the 
concentration profiles goes up. For example, the values of the 
concentration of reactant at the outlet ranges from 0.880 for 
(K = 0.1) to 0.330 (for K = 100). The result can be explained 
by analysing the expression for the reaction rate D,,C,l 
(K+ C,), when K increases, the reaction rate becomes 
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Fig. 5. [a) Axial (at p= 1) and (b) radial ([= 0.6) concentration profile 
for Langmuir-Hilshelwood kinetics for different values of k and for a= 100 
andD,,=l. 
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Fig. 6. Bulk concentration profiles for a = 100 and different values of D,,(a) 
and different values of cx( b) . 

smaller indicating that the conversion of the reactant goes 
down. It is also noted from Fig. 5 (a) and b, the concentration 
changes significantly when the value of K changes in 
0.1 I KI 10. 

One important variable in the characterization of the sys- 
tem behaviour is the bulk concentration, C,( 5>. The defini- 
tion of the bulk concentration is given [ 151: 

dp’ P’C(&P’) , 
Gm=o I = 2 d p’p’C(S,p’) \ * ((3.3) 

J dp’ P’ 
-0 

0 

For the case of first order reaction, the bulk concentration 
of reactant is given by 

CdO=l- 2a ~“~,~ j exp[ -Pn(5-5’)lCwC5’) 
0 

(69) 

This equation is linear and, therefore, it could be solved ana- 
lytically by using a series expansion procedure [ 271, how- 
ever, it can also solve numerically using the approach 
previously described. 

Fig. 6(a) and (b) shows a parametric analysis of the 
behaviour of the bulk concentration profile for different val- 

ues for D,, and different values of (Y. Computations for 
Fig. 6(a) are performed for a= 100 while those in Fig. 6(b) 
for D,, = 1. As the value of IY is constant, the bulk concen- 
tration decreases with the value of D,, increases. As shown 
in Fig. 6(b) when the value of (Y increases, the bulk concen- 
tration also increases. 

5. Illustrations for the homogenous reaction case 

The case of interest here is the system with homogeneous 
reaction that has a rate expression given by an arbitrary order 
n order for power-law kinetics. An analysis of some limiting 
situation, i.e. zero order reaction and first order reaction will 
also be performed. A numerical calculation of the concentra- 
tion of reactant is also performed. For case of homogeneous 
reaction, the concentration field is affected by the parameters 
of the system ( IY, Da, n) and their influence will be discussed. 

The general integral equation for the concentration is given 
by 

1 5 1 

~(6,~) = p’G(x,O.p’)dp’-d 
0 0 0 

5 

xWc(x’)l -;jd5’ G(xl5’J)Qv[C(5’,1)1 (70) 
0 

For the analysis of the case under investigation, 5 is in the 
domain 0 I 5~ 1. 

The boundary condition at the fixed wall, p= 0 is 
dC/dp = 0 and at the moving wall, p = 1, the boundary con- 
dition is also given by dC/dp = 0 since that case considered 
here it is assumed that there is no reaction at the wall (i.e. 
a[ C( &l) ] = 0). Also, at the inlet of the system, a uniform 
distribution is assumed. Hence, the integral equation for the 
system described above reduces to 

5 1 

C((,p) = 1 -i 
I I 

dt dp’ G(xIx’)fl[C(x’)] 
0 0 

(71) 

Homogeneous reaction of a generalized nth order has a 
kinetic equation of the following type 

R[C’(x)] =kC’“(x) (72) 

where the integer n( n I 0) may take the usual values 0, 1,2, 
and 3. The non-dimensional form of Eq. (72) is 

W2k 
O[C(x)l=- D C(x) =DaCI(X) (73) 

where Da= W*klD is the dimensionless group known as 
Damkholer number for the case of homogeneous reaction in 
the bulk.When the function fl[ C(X) ] is replaced by the non- 
dimensional kinetic rate function given by Eq. (73)) the 
concentration field C( 5,~) becomes 
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dp’G(xlx’)C(x’) dp’ (74) 
0 1 

XAG20( c- 5’) 1 (75) 

In Eq. (74) the first term on the right hand side is the 
contribution by the inlet condition on the concentration pro- 
file (this is evaluated for the particular case of C( 0,~) ) = 1. 
The second term on the right hand side is the contribution 
from the homogeneous chemical reaction a[ C(X) ] to the 
system. Therefore, Eq. (74) is the formal solution for the 
homogeneous reaction case. For this equation some limiting 
cases can be identified. For example, for the particular situ- 
ation of n = 0 Eq. (74) reduces to 

(76) 

The zero eigenvalue (A, = 0) and the corresponding nor- 
malized zero eigenfunction ( +. = 42) were used to give the 
second term on the right hand side of Eq. (76). These inte- 
grals can be calculated analytically by using the Airy func- 
tions (pn ( p) ) or, alternatively, computed numerically [ 281. 

In order to characterize the concentration behaviour in the 
system, the bulk concentration, C,( 5) need to be considered. 
The bulk concentration profile with respect to the axial coor- 
dinate of the system can be obtained by using the definition 
as follows 

I dp’ P’C(&P’) 1 

c&3=” 1 =2 

I 

I 
dp’ ~‘C(P’& 

dp’p’ 
0 

0 

(77) 

Substituting Eq. (76) into Eq. (77)) the bulk concentration 
for homogeneous reaction with arbitrary order, 12, is given by 

‘y,, was defined previously in Eq. (54). By using the properties 
of the m( see Eqs. (55) and (86) ) where n < 0, ?/n = 0. Eq. 
(78) can be reduced to 

For the zero order limiting case, Eq. (79) becomes 

C,(E)=l- ? 5 
( 1 

From the definition of conversion of the system x( 5) 

(80) 

Eq. (8 1) suggests an interesting condition for the para- 
meters of the system. Values of the parameters such that 2Da/ 
CY > 1 will result in a total conversion (i.e. x( 5) = 1) for the 
reactant before reaching the system outlet. On the contrary, 
the 2Da/cr < 1 will produce an output conversion level of the 
reactant less than 1. A value of 2Da/a=: 1 determines an 
optimal condition in the parameters that assures total conver- 
sion of the reactant at the outlet of the reactor. 

Another limiting case is the first order homogeneous reac- 
tions (i.e. n = 1) . In this situation, Eq. (78) is rewritten to 
become a linear integral equation given by 

6 

C(dp)=i-~~~~d5’expl-p,(5-~‘)] 
n=O n 0 

x dp’ 4n( PI ‘C( E’,P’) (82) 
0 

In order to illustrate the behaviour of the concentration 
profile of the reactant numerical computations have been 
performed on Eqs. (74) and (79) with different values of 
parameters of the system. Fig. 7 shows lateral concentration 
profiles for the first order reaction with (Y values in the range 
l-100 and with Da changes from 0.1 to 100. 

Fig. 7(a) shows the lateral concentration profiles for 
e= 0.6. The general trend of concentration profiles along the 
lateral coordinate is that all concentration profiles start from 
their lowest values at p= 0, and reach their highest value at 
p = 1. It is observed that the regions closer to p = 0 (i.e. the 
fixed wall) have a larger conversion than the ones near p = 1 
(i.e. the upper wall system). The behaviour implies that the 
concentration distribution is strongly affected by the flow 
field as can be seen from the figures. 

Fig. 7(b) shows the concentration distribution for a given 
Da = 1, n = 1, with different values of (Y (from 1 to 100). The 
concentration of reactant decreases as the value of (Y 
decreases. When cy > 50, the variation of concentration of 
reactant is insignificant along the lateral coordinate p. Com- 
puted profiles show that the variation of values of LY on the 
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Fig. 7. Radial concentration profiles for the first order homogeneous reac- 
tions for a given volume of (Y = 100(o) and different values of Da( b) : Idem 
(a) with different values of a and Da = 1. 

concentration field is more significant for the axial concen- 
tration profile than the lateral concentration profile [ 131. 

6. Illustrations for the case of simultaneous surface and 
homogeneous reaction 

In this section, the solution for the case of simultaneous 
(bulk and wall) reactions with power law kinetics will be 
presented. Furthermore, analysis for the simple case of zero 
order will also be determined. Some numerical calculations 
regarding the illustration of the behaviour of concentration 
profiles will be included. The general integral solution for 
simultaneous reactions is given by Eq. (50) of Section 4. 

From the mathematical point of view, Eq. (50) is more 
complicated than Eqs. (58) and (71) discussed in the pre- 
vious sections since it requires the use of the three terms in 
the integral equation and, also requires an iteration procedure 
over both spatial variables (i.e. p and 5) to obtain the solution. 
This equation can be reduced for the uniform inlet concen- 
tration i.e. C( [= 0) = 1, as shown in Sections 4 and 5. For 
this situation, the input terms reduce to unity. If an arbitrary 
order, n, for the power-law kinetics is used for the wall reac- 
tion (see Eq. (59) ) as well as for the homogeneous reaction 
(see Eq. (74) ), then Eq. (50) becomes 

5 

C( &p) = 
D 

l-2 dt’ G(xl l,t’)Cn( l,[‘) 
0 

5 1 

-2 G(xlx’)C”(t’,p’) dp’ (83) 
0 0 

The first term on the right hand side of this equation is the 
effect of the inlet distribution, the second term is the contri- 
bution of the catalytic wall reaction, and the third term is the 
effect of the bulk reaction. This equation can also be solved 
by the methodology developed in Section 4 and applied pre- 
viously in Sections 4 and 5 to the particular cases of catalytic 
wall reaction and homogeneous reaction, respectively. 

By using the procedure previously outlined, the general 
solution for the zero order reaction for the case of simulta- 
neous homogeneous and heterogeneous reactions is given by 

C(&p) = 1- [2D,,+Da] s 
0 a 

X(1-exp(-Pk)) 1 (84) 

Substituting Eq. (84) into the definition of the bulk con- 
centration, Eq. (68) and using the properties of y,, (see Eq. 
(55) ), we obtain 

C,(t) = 1- (2D,,+Da)J 
ff 

(85) 

Then, defining bulk conversion of the system, x( 5) leads to 

/HO= 
2D,, + Da 

5 a 

As discussed in Section 5, the optimal point is obtained when 

2D,, + Da = 1 (87) 
ff 

Eq. (83) is solved for the general kinetics (i.e. different from 
a zero order kinetics) by the methodology which is given in 
Section 2. Since Eq. (83) features wall reactions, the con- 
centration profile, C( & p) will show the Gibbs phenomena 
in the region of p= 1.0. In order to smooth the effect of the 
Gibbs phenomena on the computation of the concentration 
profile, the procedure explained in Appendix A can be used 
to modify Eq. (83) and derive a new formula for an efficient 
computational approach similarly to what was obtained for 
catalytic (wall) reactions. 

Fig. 8(a) and (b) shows the dimensionless lateral 
(Fig. 8(a) ) and axial (Fig. 8(b) ) concentration for CY = 100, 
Da = D,, = 1 with n = 0,1,2 and 3 for both bulk and surface 
reactions. It can be seen from Fig. 8(a) that the lateral profiles 
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Fig. 8. (a) Radial and (b) axial concentration profiles for the case of simul- 
taneous reactions for u = 100, D,, = Da = I and different order (n = I ,2,3). 

are very close to each other. And in this case, the biggest 
difference among the concentration profiles occurs near both 
ends, the moving wall and the fixed wall. This behaviour is 
caused by the simultaneous reaction situation that we con- 
sider here. Near the fixed wall, the concentration drop is 
mainly due to a longer residence time, however, close to 
moving wall, the concentration is affected by the catalytic 
surface reaction which occurs on the surface of the moving 
wall. The shape of concentration profile depend on parame- 
ters, Pe and Da. From Fig. 8(b), we can see that the concen- 
tration, for example, at the outlet of the system reaches a 
value of C,( 1) = 0.874 for the zero order reactions (i.e. for 
both of wall and bulk reactions), and a value of C,( 1) = 
0.885 for simultaneously first order reactions. 

Fig. 9(a) shows the lateral concentration distribution for 
the value of D,, = 1, with different values of homogeneous 
reaction rate Da = 0.1, 1, 50, 100. It is shown in the figure, 
that as the value of Da increases the concentration of reactant 
decreases. The greater effect of in the drop in concentration 
values is seen near the fixed wall (p=O) because of the 
distribution in the residence time values. Therefore, for the 
particular values of the parameters in this region, the homo- 
geneous chemical reaction a dominant effect relative to the 
heterogeneous chemical reaction. 

Fig. 9(b) shows the effect of the values of (Y on the con- 
centration distribution for D,, = Da = 1, and for the first order 
reactions. As we decrease the values of (Y, the concentration 
moves down. This is due to the residence time which is 
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Fig. 9. Radial concentration for first order simultaneous reaction for (I = 100. 
D,, = I with different Damkholer numbers, Da, (a) and (b) for D,,= 
Da= 1 and with different values of LY. 

influenced by the velocity field. Also it is seen that the con- 
centration profiles differ greatly for different values of the cr 
when (Y < 50. Fig. 9(b) shows the wall concentration along 
the lateral coordinate with different value of cy. It is noted 
that for a small value of (Y, the wall concentration profile 
become less pronounced and it exhibits an almost lineartrend 
of decay. 

7. Summary and conclusions 

The work of this paper is focused on the general mathe- 
matical formulation of the convective-diffusive mass transfer 
and reaction problem associated with Couette flow. An inte- 
gral-spectral approach is developed in terms of integral equa- 
tions by generating the approximate Green functions. The 
Green function is expanded in terms of the eigenvalues and 
eigenfunctions of the associated Stiirm-Liouville problem 
that arise from the identification of the diffusion operator of 
the transport problem and is solved analytically by using Airy 
functions. The Green function has mathematical features 
common to all transport situations and, interestingly, it is 
independent of factors, such as the reaction sources, that are 
specific to each problem. These characteristics are very useful 
in avoiding repetitive computational effort when treating dif- 
ferent cases and performing a parametric analysis as it is 
illustrated in this article. For example, the integral-spectral 
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methodology developed in this contribution is applied to 
cases with uniform inlet distributions and either catalytic wall 
reactions, homogeneous bulk reactions or simultaneous wall 
catalytic and bulk homogeneous reactions. The integral equa- 
tion resulting from inverting the differential problem is the 
formal solution to the differential reactor system and it 
requires a computational (i.e. iterative) procedure to obtain 
the concentration profiles except in the case of zero order 
reactions. For this particular case, analytical solutions are 
derived from the general integral solution and various a priori 
conditions for the parameter space (a, Da, D,,) can be writ- 
ten for such a solution. Also, the integral equation features 
the contribution of the three main physical factors of the 
reactor problem, i.e. the inlet distribution of reactants, the 
catalytic reaction at the wall, and the homogeneous chemical 
reaction in the bulk. These three different conditions can be 
clearly identified in the final equation from which particular 
cases can be derived as well. 

Concentration profiles have been obtained numerically in 
the system. The results indicate the significant effect of het- 
erogeneous chemical reactions only near the wall ofthe reac- 
tor, for a wide range of parameters; i.e. Peclet number Pe, 
homogeneous reaction parameter Da and wall reaction 
parameter D,,. 

For the case of catalytic reaction at the wall, concentration 
profiles have been computed for a variety of situations and 
for two different types of kinetics, i.e. power-law and Lang- 
muir-Hinshelwood. The calculations show that for the 
power-law kinetics, the effect of reaction order, n on the 
concentration field is insignificant. 

Due to the non-homogeneous boundary conditions for the 
case of wall catalytic reactions, the Gibbs phenomenon results 
from the Fourier expansions associated with the Green func- 
tion. This phenomenon must be significantly reduced in order 
to obtain the concentration profiles. The technique which is 
applied here for such a purpose is based on closed sums of 
Fourier problems featuring zero-order kinetics. The proposed 
technique is an alternative to the classical Lanczos method- 
ology to smooth the impact of the Gibbs phenomenon in 
Fourier expansions. The computational technique used in this 
case is well suited for reaction occurring at the wall. For 
example, the usual two dimensional problem is solved (iter- 
atively) by using a one dimensional problem, i.e. the 
unknown is only the concentration at the wall. This aspect 
reduces considerably the computer requirements and it leads 
to an efficient way of solving the differential model. 

Computations with illustrations for a variety of situations 
were also performed for the simultaneous bulk reaction and 
catalytic wall reaction case. The computations show that, for 
the values of the parameters used in the analysis, the homo- 
geneous reaction has an important effect on the shape of the 
concentration profile. The wall reaction only affects the shape 
of the concentration profile near the wall channel. This can 
also be seen as the effect of the distribution of the residence 
time in the reactor. Due to the linear nature of the convective 
velocity, such a residence time is larger near the steady wall 

and smaller near the moving wall. The computations per- 
formed in this paper show that the integral-spectral method 
works for a number of cases in convective diffusive transport 
in Couette flows. The method can also be extended to even 
more complex situation such as multicomponent and non- 
uniform inlet distributions or non-uniform catalytic activity 
at the wall. Some of these cases will be the subject matter of 
future communications. 

8. Nomenclature 

c 

C’ 

C 

D 
Da 
DW 
Ge 
H 
H 

L 
k 
L 
Pe 
V(Y) 

normalization coefficient for Sttirm-Liouville 
Problem 
concentration, non-dimensional 
molar concentration, dimensional 
non-dimensional concentration 
diffusivity of reactant species 
Damkholer number, bulk reaction 
Damkholer number, wall reaction 
geometrical parameter 
width of the channel, dimensional 
parabolic operator defined in Eq. ( 14) 
integral function of eigenfunctions 
absorption constant 
length of the channel, dimensional 
Peclet number, mass transfer UHId 
hydrodynamic velocity profile, dimensional 

Greek letters 

parameter ( PeGe), non-dimensional 
hzlc~, constant related to the eigenvalue A, 
nth eigenvalue of the Sttirm-Liouville problem 
eigenfunction of the Sttirm-Liouville system 
reaction rate, non-dimensional 
reaction rate (wall reaction), non-dimensional 
lateral coordinate, non-dimensional 
axial coordinate, non-dimensional 

Subscripts 

W wall 
P derivative with respect to radial coordinates 
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Appendix A 

The term associated with the reaction at the wall in the formal 
integral solution can be re-written as follows 
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6 w =‘c 4”(1)4JP) 5 a! 
I?=0 Ai s exp( -M’)fkA5’,1) dt’ 

0 

5 

Now, an asymptotic expression for the second term on the 
right hand side of Eq. (Al) will be derived. By performing 
an integration by parts, this term can be rewritten as 

5 
pi .f 

“=N+ I 

MLyP) 
exp( - P,c3 

n s 
expt - A5’) 

0 

x%tt?,l) 45’ 

=,=;+, n n 
= 4”(k),y+n,(E,1) -fi,(0,1) 

If the number, N, is chosen such that &,! A.$+ 1. where 
A 5 is the step length for 5, them we have 

exk-4 - A8 = et 0 (A3) 

expt -/%(5-t’)) = Ott’-5) (A4) 

where, 0( 5) is a special function which is defined in a real 
space as 

et0 = 
1 ift=O 
0 otherwise 

Then, Eq. (A 1) can be further simplified as 

[J-&A&1) -aAO,1)@(5)1 

XexpW,t5’-5)) d5’ 

(As) 

Now, both terms in the equation have been expressed as 
the products of a prelated function and a l-related function. 
The prelated parts are the series expansions of eigenfunc- 
tions which are independent of the parameters chosen in the 
calculation. It is convenient to define the following functions 

(‘46) 

(A7) 

(A9) 

Substituting Eqs. (A6)-(A9) into Eq. (AS) yields the fol- 
lowing relationship 

-fuo,~t&t)l -dye2’(p) 

-~~2’(p,N)l~,,<~,l)[l-e<5-,l (AlO) 
A close form expression g”(p) was derived by Mills 

[ 241 and it can be written as 

ccr,(p) =A0[V,(p4/12-p’/6] +A, 

where for the case of interest 

(All) 

vo=o 
A, = 6.0/ ( V, - 3.0) 

In Eq. (A lo), the value of the second term can be shown to 
be much smaller than the first term, if adequate number of 
terms are taken. Therefore, for example, if I l//3,, I = 
I a/h: < 1, then the following relationship can be written 

In consequence, the second term is smaller than the first 
term by a factor of PN+, The computation of the correction 
part is then further reduce to the calculation of 

R= [G%“(P) -ti”b~N)l [&AL3 -.n(U)NE>l 

(A13) 

Thus, for the case of only heterogeneous reaction, at the 
wall the integral Eq.( 26) becomes 



2. Chew, P. Arce / Chemical Engineering Journal 68 (1997) I l-27 21 

Xexp(P,L’>%45’~1) d5’ (A141 

This nonlinear integral equation was solved by the iterative 
scheme proposed in previous Section 2 with N= 10-20. 
After this correction, the fluctuations in the concentration 
profile were drastically reduced for a wide range of parame- 
ters values of the system and for the same number of 
eigenvalues. 
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